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TEMPERATURE FIELD OF A MOVING POINT SOURCE 
WITH CHANGE OF STATE 

N. D. MALMUTH 
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(Received 4 February 1975 and in reuisedform 7 July 1975) 

Abstract-A theoretical simulation of automatic welding as a moving point source of heat with conduction 
as the dominant mode of transfer is refined to incorporate change of state across the melt boundary. 
Matched asymptotic expansions are used to solve the singular perturbation problem associated with 
arbitrary latent heat, and small values of source dimensionless velocity-power product. The problem 
is mathematically analogous to scattering of long waves off a sphere. It is shown that previous empirical 
estimates which subtract the latent heat power from the corresponding input quantity seriouslv over- 

predict the effect of change of state on weld depth. 
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NOMENCLATURE* 

common part; 
thermal diffusivity; 
equation (3a); 
equation (11); 
unit vectors along Cartesian axes (Fig. 1); 
thermal conductivity; 
keyhole operator, equation (la), latent 
heat; 

(r, 8, +), spherical polar coordinates (Fig. 1); 

K travel speed; 
(.%, j, z), dimensional Cartesian frame traveling 

with source (Fig. 1); 
(x, y, z), dimensionless Cartesian coordinates. 

Greek symbols 

a, speed-power parameter; 

Y> latent heat parameter; 

2, diffusion length, 2D/V; 

P* dimensionless polar radius from source 
point, mass density; 

Pi3 dimensionless interfacial position; 

r, reduced tem~rature; 

rir interfacial temperature; 

A, Laplacian operator; 
[ 1, jump in a quantity across interface. 

Subscript 

i interface. 

Superscripts 

+, solid side of interface; 
-9 liquid side of interface. 

INTRODUCTION 

A NUMBER of problems in machining and joining 
processes involve heat addition through the action of 
a cutting tool or a heat torch. This leads to important 

*Numbers refer to equation in text where symbol is 
defined. 

transformations in the metallurgical and mechanical 
properties of the workpiece. To predict these changes, 
knowledge of the associated thermal response is 
required. 

Most welding processes exemplify these ideas. The 
description of the associated temperature fields has 
been a subject of intensive research, see for example, 
Rosenthal [l] in regard to workpiece thermal response, 
and [2-7f in connection with the determination of the 
heat flux distribution associated with freely burning 
arcs of welding type. These distributions are subject 
to a large variety of complex hydromagnetic processes 
involving transient three dimensional turbulent flows 
with coexistence of the processed material in all of the 
four states of matter. Nevertheless, progress can be 
made when the spatial scales of these phenomena are 
small compared to the fusion zone dimensions. Such 
cir~umstan~s frequently occur in laser, plasma, and arc 
welding, and lead to the assumption that the welding 
torch can be characterized by an intense moving source 
of heat, [l, 81, with the extent of the fusion zone 
primarily determined by conduction processes, and the 
convection and radiation playing a secondary role in 
controlling the strength of the source. Although this 
model leads to useful conclusions regarding the para- 
metric dependence of thermal cycles, peak tempera- 
tures, and weld geometries, the role of certain nonlinear 
processes such as change of state, must be dete~in~ 
to establish the range of applicability of the simpler 
linear model. For welding, the phase transformations 
correspond to freezing and vaporization of a molten 
“pool” of metal below the heat source. The energy 
stored in the latent heat of fusion for steels can be as 
much as 30 per cent of that required to bring the 
material to its melting point, and the corresponding 
quantity for vaporization can be ten times higher. 
These factors underscore the need for quantitative 
information. Unfo~unately, such info~ation must 
come from the solution of a nonlinear free-boundary 
value problem. Problems of this type have been studied 
in one dimension in an extensive number of physical 
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situations. An account of these is given in [8]. Treat- 
ment of three dimensional systems involving simul- 
taneous energy addition and phase change seems to 
he limited to numerical methods such as those de- 
scribed in [9]. To obtain information on parametric 
dependencies, some sort of analytical solution is re- 
quired. Although the mathematical problem shows no 
encouraging prospects for exact solution, the appli- 
cation of perturbation methods suggests the possibility 
of practically useful approximate solutions. Such rep- 
resentations were obtained in [lo, 1 l] corresponding 
to a single phase boundary associated with a fusion. 
That analysis can be readily generalized to handle 
additional free boundaries such as those for vapor- 
ization. In [lo] and [ 111, the approximate develop- 
ments were based on forma1 asymptotic expansions of 
limit process type [12], involving two lumped par- 
ameters arising in the nondimensional formulation of 
the problem. Denoting 0 as the density, k as the 
conductivity,* L = latent heat of fusion, T, = melting 
temperature,? I/ = lineal speed of welding torch, (see 
Fig. l), c = specific heat, D = thermal diffusivity = 
k/PC, Q = net heat flux, these parameters are a latent 
heat parameter y = L/CT,, and a power-speed par- 
ameter c( = QV/4nkT,D. The first two terms of the 
appropriate expansion for the temperatures and inter- 
face contour were obtained in [lo, 111 for the limit 
y + 0, with OL and the dimensionless polar radius p 
(see Fig. l), fixed. The latter is expressed in units of the 
characteristic diffusion length 3, = 2D/V. In this expan- 
sion, the dominant term corresponds to vanishing y 
and the second term is the approximate perturbation 
associated with change of state. 

Electrode--, 

1 

FIG. 1. Geometry of problem 

to be the infinite half space y > 0. Furthermore, only 
one phase boundary will be considered for the present, 
and without loss of generality will be designated as 
that corresponding to fusion. The case of two bound- 
aries, i.e. vaporization and fusion, will be deferred to a 
subsequent analysis. Denoting T as the temperature 
elevation above ambient conditions (occurring at in- 
finity), the appropriate boundary value problem can 
be formulated in terms of the following normalized 
variables 

It is of interest to investigate the temperature field 
when the parameter y is no longer small. For this 
purpose, asymptotic expansions will be treated in this 
paper for the limit c( -+ 0, y fixed. In contrast to the 
regular expansion about y + 0 previously discussed, 
this limit leads to a singular perturbation problem for 
reasons that will be made clear. Uniformly valid 
representations will be obtained for the dominant term 
of the asymptotics for the phase change boundary and 
the temperature field outside of it. To make this paper 
self contained, the formulation of the dimensionless 
temperature problem will be reproduced here from 
[lo, 111. 

Conservation of energy then leads to the following 
statement of the exact problem, in which the plane 
y = 0 is considered adiabatic, as specified in (lg): 

(A- 1)7 = L[7] = 0 

lim ,f_?Tp = --tL 

[V7.R]i=+~i~.B, [ ]i=( jp,+-( Jo,- 

[7]i = 0 

ri = ePrCOS6’ 

7 = o(ePcoSB) as P-+co 

a7 

a4 4=oz 0 

(14 

(lb) 

(lc) 

(14 

U-4 

Uf) 

Ud 

FORMULATION OF EXACT BOUNDARY VALUE 
PROBLEM 

where 

A E a2/a?+a2ja$+a2jai? 

Referring to Fig. 1, the point source is depicted as 
lying at the origin of the Cartesian set (x, j, 2) or the 
spherical polar set (?, ($4). The source simulates the 
welding torch which is stationary in the frame, so that 
the material moves relative to the torch with the 
velocity, - Vk, where k is the unit vector in the z 
direction as shown in Fig. 1. The workpiece is assumed 

and pi represents the phase change interfacial bound- 
ary. In what follows, the region p < pi will be referred 
to as the “molten pool” in conformance to welding 
applications. 

SMALL POWER-ARBITRARY LATENT HEAT 
APPROXIMATION 

*As in [lo, 111, a constant value is assigned for this 
parameter. 

twithout excessive loss ofgenerality, the thermal proper- 
ties ofthe liquid and solid states are assumed here to coincide. 

In this section, the method of matched asymptotic 
expansions [12-141, is applied to obtain the limiting 
representation of the temperature field and phase 
boundary at small power-velocity levels (a + 0). These 
conditions imply nearly circular isotherms, with the 
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temperatures being approximately those produced by 
a stationary welding torch. In the present units, the 
limiting solution corresponds to the melting isotherm, 
pi(e) shrinking to the source point, i.e. pE = 0(a) as 
a -+ 0. To keep the interface boundary pi in view as 
a -0, a strained variable p and an “inner” limit are 
defined in the following manner : 

Retention of the next order terms in the previously- 
mentioned substitution process gives the following 
first order problem : 

Agl = 0 (6a) 

P p=- fixedas a-+0. 
c? (2) 

Thus, the interface position expressed in the new 
units,& z pi/a = U(1) as M -+ 0, and the “fine structure” 
of the molten pool p < pi can be analyzed in the a -+ 0 
limit. Problems of this type arise in other areas of con- 
tinuum mechanics, the most famous application being 
in fluid dynamics, where a coordinate stretching is 
required to see the details of the “boundary layer” or 
region of important viscous effects (near the surface of 
a body) in a slightly viscous flow. Another situation 
which leads to a boundary value problem analogous 
to (1) but with real frequency, is the scattering of a 
plane wave from a sphere whose radius is small com- 
pared to the wave length of the incoming wave. In this, 
as well as the present case, there are two disparate 
length scales. For the scattering problem, these are the 
wave length of the incoming wave and the radius of the 
sphere, and in the present case, are the diffusion length 
ZD/Vand the melting radius at V = 0, namely Q/2nkT,. 
This situation usually implies a singular perturbation 
problem, in which for an assumed parametric limit, 
approximate representations of the solution are not 
uniformly valid in the space of the independent vari- 
ables. Prescriptions for uniforming the solution have 
been devised for special bound~y value problems for 
ordinary differenti~ equations, but no comprehensive 
theory exists for partial differential equations. 

For the case at hand, it is asserted that in the limit (2), 
the asymptotic representations of the reduced tempera- 
ture, z, and the phase boundary pi are 

Z(P,& a, Y)inner i so@)+~G("s.Gj,O; Y) (34 
1 

Pi(8; a,Y)k CI l+f d’R,(B; y) 
I 1 Pb) 

1 

where y is fixed and g., R, = O(1) as a + 0. 
The zeroth order inner boundary value problem 

resulting from su~tituti~n of (3) into (1) and retention 
of the dominant terms is 

Iim P2gb = - 1 W) 
p-0 

[sblr = 0 WI 

[SOli = O (4c) 

go,,- so(l) = 1. @) 

Approximation of the dominant term of the Y --* 0 
expansion in [lo, Il] in the inner limit (2) gives 

90 = P-l (5) 

which satisfies all the conditions of the problem (4). 

p16~~(~2~)+c0sec@~(sinf?~) 

&?l 
[ II - 

a@ i 
= 2pcose 

r.&,l = 0 (f-3 
RI = g,i-COSB 64 

In (6) as well as (4), the conditions at the point at 
infinity have been left unspecified. The reason for this 
will become clear presently. Denoting quantities with 
(-) and (+) superscripts as those corresponding to 
p < pi and p > pi, respectively, it is reasonable to 
assume in view of (6b) and the theory of harmonic 
surface d~tributions [15-i 7] that the solution of (6) can 
be expressed in terms of the first two Laplace spherical 
harmonics. The steps justifying this assertion follow 
arguments given in [ 1 I]. Thus, 

s; =$?+a:o+(~+B:,P)cosi). (7) 

Substitution of (7) into (6b), (6c), yields 

/3cosB @a) 

g: =B:,+(B:,j%$)cosO. (8b) 

It thus appears that gi is undete~in~; there seeming 
to be no other relations to determine the I%:,. At this 
point, it is recalled that the conditions at infinity have 
not been specified for the zeroth and first order 
boundary value problems. The reason for this omission 
is associated with a non-uniformity at the point at 
infinity for gl. For this purpose, consider the limiting 
solution for T as Y -+ 0 given by to in [lo, 111, where 

70 = o&o), p = O(a) 

:i 

(94 
and as a-0 

z. = A.ro, P = O(l) (9b) 

i.e. Q is approx~ately a zeroth order Laplace har- 
monic for small enough radius, since e-P is an entire 
function. Moreover, the essential singularity in this 
function at the point at infinity implies a divergent 
Taylor’s expansion in that neighborhood, nullifying 
the validity of the Laplace harmonic approximation, 
and requiring a spherical Bessel harmonic represen- 
tation in its stead. Since ?. is a limiting solution, (9) 
should apply for tl -+ 0, with y # 0, i.e. with the zero 
subscripts removed. 

To formalize the preceding intuitive arguments, con- 
sider an “outer” limit defined as : 

p,pfixedasas-+o. (10) 

With this choice of coordinates, the pool, p < pi will 
shrink to the origin, and the appropriate asymptotic 
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expansion is asserted to be: 

r’(K), 8; a, Y)(outer) e h,(p) + 5 @%l(/& 0; Y), 
1 

h, = 0( 1). 
(11) 

On substitution of (11) into (l), retaining only the 
dominant term 

(A-l)ho=O= !!~$[P2~]-ljho 
and thus: 

ho = C(u)“Jp. 
Here, the means of determining the constants in (12) 
and (8) becomes evident; i.e. since (12) and (8) are 
representations of presumably the same function in 
different regions, they could perhaps be mutually valid 
in some overlap domain, denoted as 

p = O(q(a)) as CI -rO (13) 

where q is an order class such that 

W) < 0(?(E)) < O(l). (14) 

In this overlap or “intermediate” region, the represen- 
tations (11) and (3) should “match” to give identical 
representations to all orders of c(. It is this matching 
condition that determines the unknown constants in 
the inner and outer solutions. Before formalizing the 
matching condition, it should be noted that often the 
inner and outer expansions do not match to each other 
but rather to an intermediate expansion. This more 
involved case appears not to occur in this problem. 

To construct the representations of the inner and 
outer solutions, define an intermediate limit, consistent 
with (13) and (14) as 

P 4 
p,, = - =- fixed as a-+0. 

V(a) t?(a) 
(15) 

Let 

(16) 

Formalizing the previous discussion, the matching con- 
dition to order ~1” can be written as : 

providing zouter and ri,“, match directly in the manner 
discussed above. 

Now, to apply (17), the representation in intermediate 
variables of the inner and outer solutions is required. 
From (5), (8), and (12), these are 

. . . (Isa) 

(18b) 

To the order of approx~ation to be considered here, 
only zeroth order matching is required. Thus, on 

applying (17) 

= 0. (19) 

It is clear from (19) that 

C=CX 

B,f,= -1 

(20a) 

(2Ob) 

B:, = 0. (204 

For later purposes, denote the common part (CF.) as 
the terms that cancel in the matching. This is found 
from (19) to the order of approximation to be 

c.p.*fi--‘-a+.... (21) 

Substitution of (20b) and (20~) into (8) gives for the 
inner expansion 

z=r-=P-’ -a(l+~lin,S@)+.*.* p<pi (22a) 

=r+=p-’ -a 
i 

I-k~$-‘COS@ 

> 
+e.., p>pi+ (22b) 

The phase boundary is obtained from application of 
(22) to (6d). Noting that 

-s; = 1+;pcoss 

2Y -g: = 1+_?p-%osB 

it follows that 

cos0 (23a) 

pi=l-e[l+(l+2$,cos@]+.... (23b) 

The outer expansion is merely the dominant term 
of the y -+ 0, tl fixed expansion, i.e. substitution of (20a) 
into (12) gives 

r&ter i h,, = cle-p . (24) 
P 

A uniformly valid representation of T+ can be obtained 
as a composite expansion by adding the inner and outer 
expansions and subtracting the common part. Thus, 
from (22b), (241, and (21) 

=u ~--cod3 L 2Y 
382 I 

+... 
P 

(25) 

which is consistent with CI -+ 0 limit of the appropriate 
small y expansion given in [ 10, 111. 

DISCUSSION 

Of primary interest in welding applications is the 
“penetration”, or vertical extent of the fusion zone. To 
a good approximation, this may be estimated to be the 
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maxims half width of the melting isotherm. The 
effect of latent heat on this dimension at small power 
levels can be obtained from (23b) for CL -+ 0. The angle 
and radius at which the pool width is a maximum are 
respectively 

Denoting this width by jj, it follows that 
_ W 
Y = pmax sin @,,, 

But from (23af 

Substitution of (28) and (26) yields finally 

j=l--a+.... (29) 

Thus, the latent heat has an effect on the penetration 
that is 0(x2) as a -+ 0. This behavior is in a~~rnent 
with cal~lations based on a nurne~~l integral equa- 
tion solution developed in EM]. 

A quantitative validation of the solutions embodied 
in (22) and (23) is given in Table 1 and Fig. 2, where 
the results for the interfacial boundary position using 
these relations are compared with those given in [18] 
for LX = 001, y = 10, and e = O-1, O-2 at y = 1. For 
IX = 001, the agreement is excellent over most of the 
range. 

Table 1. Comparison of melting isotherm 
predictions from solution af equation (23b) 

and [18j for a = 001, y = 10 

8 (m-l.) pi (Section 6) $i US1 

0 0.9133 a9208 
0.1953 0.9148 09217 
04478 0.9209 09264 
07639 @93i4 09345 
0‘9550 0.9457 (39458 
1.2078 0*96X+ 09602 
1.4598 0.9815 09769 
1.7109 1@07 09952 
1.9611 1.0192 1.0142 
22104 1.0358 1.0325 
2.4588 lW95 1@486 
2.7064 1.0595 1*0611 
2.9521 14x53 1.0687 

3L 14667 t.0703 

in Fig. 2, good agreement between the asymptotic 
and numerical solutions is shown, away from the head 
of the melting isotherm, B = 0. For y = 1, this ct value 
appears to be near the limit of usefulness of the two 
term expansions, as exemplified by the large discrep- 
ancies evident for Q = @2. An inspection of (23b) shows 

FIG. 2. Comparison of numerical and asymptotic solutions 
for head and tail boundaries, o! = 0.1, 

f I 1 
- Asymptotic sol~ti~ns,equation (23b) 

----- Numerical solution, 081 

~~~ 

0.04\ 
/ I t 1 
2 3 4 5 

Y 
FIG. 3. Comparison of numerical and asymptotic solutions 

for phase boundaries, y = 1. 

that the largest perturbations occur in the vicinity of 
B = 0. In fact, for y = 0, the head radius pi0 is 1 -a, 
as compared with the tail value, pi., which is 1 +O(a’), 

making the increased sensitivity near the nose of the 
isotherm plausible. This aspect is corroborated in Fig. 3 
which compares the head and tail isotherm radii, pi, 
and pt. asymptotic results against those of [18] for 
various y at a = 0.1. It is evident that greater dis- 
crepancies occur at the head than at the tail. Predict- 
ably, these differences also increase with 7. 

In particular, it should be noted that the foregoing 
results are non-uniformly valid for y -+ 0~1, as a -f 0. 
This can easily be seen from {22), (23) and (25). For this 
limit, other ~rturbation procedures may be feasible, 

The present solution is pa~icularly significant in the 
light of past efforts by other workers to account for 
the latent heat effects by empirically subtracting the 
associated power from the input value. Using the 
previous notation, the mass flow across a section of 
the fusion zone of width d is pi’&, implying the net 
power input to be Q-e. It is seen from (29) that this 
procedure is too crude an approx~ation to reality, 
since it ignores the liberation of energy at the tail of 
the pool due to freezing. Based on the present analysis, 
the decrement in penetration will certainly be over- 
predicted by the empirical method. 

~~kn~w~e~ge~e~t_T~~s work was ~rformed under the 
Rockwell Intemational Independent Research and Develop- 
ment and Interdivisional Technology Programs under tech- 
nical cognizance of the Welding and Heat Treating Technicaf 
Panel. 
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CHAMP DE TEMPERATURE AUTOUR D’UNE SOURCE PONCTUELLE MOBILE 
AVEC CHANGEMENT D’ETAT 

R&urn&On ameliore une simulation numkrique du soudage automatique pour laquelle la source 
ponctuelle mobile de chaleur est associk au mode p&dominant de transfert par conduction, afin 
d’introduire le changement d’btat a travers la couche de fusion. On utilise des dkeloppements 
asymptotiques approprib pour r&soudre le probl&me de perturbation singulier, associt g une chaleur 
latente arbitraire et &de faibles valeurs du produit vitesse-puissance rendu adimensionnel. Le problime est 
mathematiquement analogue g celui de la dispersion d’ondes longues autour d’une sphtre. On montre que 
les estimations empiriques qui retranchent la puissance d’origine latente de la puissance introduite 

surrestiment fortement l’effet du changement d’&at sur la profondeur de la soudure. 

TEMPERATURFELD EINER BEWEGTEN PUNKTQUELLE MIT PHASENANDERUNG 

Zusammenfassung-Der Vorgang des automatischen SchweiDens wird theoretisch simuliert durch eine 
bewegte WIrmequelle mit WLrmeabIeitung als dem dominierenden EinfluI3 und es wird hier der EinfluD 
der Phasentinderung auf die Schmelzgrenze in die Betrachtung einbezogen. AngepaMe asymptotische 
Niiherungen dienen zur LGsung des singularen StGrungsproblems mit beliebiger LatentwLme und kleinen 
Werten der dimensionslosen Quellgeschwindigkeit. Das Problem ist mathematisch analog der Ausbreitung 
langer Wellen von einer Kugel. Es wird gezeigt, da13 die friihere empirische Abschstzune, wonach die 
LatentwCrme von der entsprechenden zugefiihrten Wlrme abzuziehen ist, zu einer starken OberschItzung 

des EinfluDes der Phasensnderung auf die SchweiDtiefe fiihrt. 

TEMI-IEPATYPHOE I-IOJIE nEPEMELIlAIOorrlEI-OC~ TOYEqHOrO MCTOYHMKA 
nPM @A30BbIX nPEBPAuEHMflX 

AWoTanHn- TeOpeTMYeCKOenpenCTaBJIeHHeaeToMaTHYeCKOfiCBapKH KaKABWKymerOCRTOYeYHOrO 

HcToYtiHKa -renna c noiwiHwpoBaHkieM TennonpoaonHocw B npouecce nepwoca TennaycoBepmew 

cTBoBaHanyTeMyYe_ra ki3MeHeH~~arpera~rioro~0~~0s~rrn BnonbrpaHwbr pacnnaBa.,&wpemeHw 

3aLlaYH CMHryJUlpHblX BO?MylUeHWfi npM npO5i3BOJlbHOM 3HaYeHMH CKpblTOii TenJlOTblH He6OnbmEiX 

3HaYeHHIIXnpO~3BeneHWl6e3pa3MepHOfi CKOpOCTA HCTOYHWKaHa3HeprHlO LiCnOJlb3ykOTUl flBOiiHble 

acHh4nTowYecKHe pa3no~eswn. MaTeMaTHrecKrc sanara ananorMyna cnysafo paccesww nnwwblx 

BonH OT c@epbl. nOKa3aH0, YTO npenbrayurwe sh4nkipnYecKkfe oueHKH, Kor.na 3HeprHn cKpblToB 

Te‘UIOTbl BblYHTanaCb M3 KOnHYeCTBa nOCTynWBmei? TennOTbl, 3HaYHTeJlbHO npeBblma,OT BJIMIfHHe 


